Members
Overall Objectives
Research Program
Application Domains
Highlights of the Year
New Software and Platforms
New Results
Bilateral Contracts and Grants with Industry
Partnerships and Cooperations
Dissemination
Bibliography
XML PDF e-pub
PDF e-Pub


Section: New Results

Assessing the impact of partial verifications against silent data corruptions

Participants : Aurélien Cavelan, Saurabh K. Raina [Jaypee Institute of Information Technology] , Yves Robert, Hongyang Sun.

Silent errors, or silent data corruptions, constitute a major threat on very large scale platforms. When a silent error strikes, it is not detected immediately but only after some delay, which prevents the use of pure periodic checkpointing approaches devised for fail-stop errors. Instead, checkpointing must be coupled with some verification mechanism to guarantee that corrupted data will never be written into the checkpoint file. Such a guaranteed verification mechanism typically incurs a high cost. In this work, we assess the impact of using partial verification mechanisms in addition to a guaranteed verification. The main objective is to investigate to which extent it is worthwhile to use some light cost but less accurate verifications in the middle of a periodic computing pattern, which ends with a guaranteed verification right before each checkpoint. Introducing partial verifications dramatically complicates the analysis, but we are able to analytically determine the optimal computing pattern (up to the first-order approximation), including the optimal length of the pattern, the optimal number of partial verifications, as well as their optimal positions inside the pattern. Performance evaluations based on a wide range of parameters confirm the benefit of using partial verifications under certain scenarios, when compared to the baseline algorithm that uses only guaranteed verifications.

This work has been published in the proceedings of ICPP'15 [22] .